Laboratorium Diagnostyki Pokładowej Pojazdów

Badania symulacyjne reaktora katalitycznego

Opracowanie: Marcin K. Wojs

Warszawa 2013

1. Wstęp

Tematem ćwiczenia jest symulacja reaktora katalitycznego reprezentowanego przez katalizator trójdrożny – three way catalytic converter (3WCC). Ten układ wydechowy jest przystosowany do silników benzynowych o składzie mieszanki paliwo / powietrze zbliżonym do stechiometrycznego. Redukcja NO i CO oraz utlenianie HC można odbywać się w tej samej strukturze reaktora katalitycznego. Poniżej przedstawiono ogólne reakcje katalityczne zachodzące w 3WCC:

CO + $1/2 O2 \rightarrow CO2$ CaHb + (a + b / 4) O2 -> aCO2 + b / 2 H2O lub CaHb + (/ 2 + b / 4) O2 -> Aco + b / 2 H2O CO + NO -> CO2 + 1/2 N2CaHb + (2a + b / 2) NO -> aCO2 + b / 2 H2O + (a + b / 4) N2 CaHb aH2O + -> + AcO (a + b / 2) H2 CO + H2O <=> CO2 + H2 H2 + $1/2 O2 \rightarrow H2O$ H2 + NO -> H2O + $\frac{1}{2} N2$

2. Przebieg ćwiczenia

Zajęcia odbywają się przy wykorzystaniu oprogramowania AmeSim firmy LMS Imagine.

Uruchamiamy program przy pomocy ikony:

Nawigacja pomiędzy etapami symulacji odbywa się przy pomocy paska menu z rys.1.

Rys.1. Menu główne

2.1 Sketch mode

Pierwszym zadaniem wykonującego ćwiczenie jest zbudowanie modelu jak na rys.2.:

Rys.2. Model symulacyjny reaktora 3wcc

Model składa się z następujących elementów:

Biblioteka IFP Exhaust

Biblioteka Signal, Control

External Variables	Sygnał stały
constant signal	
For variables which have a direction associated with them, a positive sign is in the direction of the arrow.	
Help Close	
External Variables	
RAMP0 ramp function	Sygnał narastający
For variables which have a direction associated with them, a positive sign is in the direction of the arrow.	
Help Close	
External Variables	Currente a concléui
JUN3P comparison junction summing both inputs	Sumator Sygnatow
For variables which have a direction associated with them, a positive sign is in the direction of the arrow.	
→ null3	
Help Close	
External Variables	Multiplekser
DYNMUX2 dynamic multiplexer	Wattpicksei
For variables which have a direction associated with them, a positive sign is in the direction of the arrow.	
Help Close	

Wstawienie ostatniego elementu spowoduje pojawienie się dodatkowego menu, które należy wypełnić zgodnie z rys. 3.

Enter the values of the struc parameters for	tural	
dynamic multiplexer	block	
number of ports at left	12	-
number of inputs per port	1	*
dimension of each input	1	*
dimension of each output	1	

Rys.3. Okno dialogowe opcji multiplexera

2.2 Submodel mode

Kolejnym etapem po złożeniu modelu symulacyjnego jest przejście do etapu definiowania submodeli. Jedynym submodelem który jej wymaga jest EXHCC3W czyli reaktor katalityczny. Wybór opcji odbywa się po kliknięciu na element prawym klawiszem i wybraniu **Set Submodel** jak na rys. 4.

Rys. 4. Wybór opcji ustawiania submodelu

Na rys. 5. przedstawione wszystkie możliwe opcje dla tego elementu, należy wybrać podświetloną na niebiesko.

Submodel Lis		? <mark>x</mark>
3- 3- 3W	exh_3wcc	
Submodel list		
Name	Description	
EXHCC3W001	3 way catalytic converter	
EXHCC3W002	3 way catalytic converter - 02 and HC storage	
Copy comr	on parameters when submodel changes bles Help	Explore Remove

Rys. 5. Typy reaktora katalitycznego możliwe do wykorzystania w symulacji

2.3 Parameter mode

Wszystkie dane wejściowe niezbędne do uruchomienia symulacji ustawia się w **Parameter mode**. Odbywa się to po dwukrotnym kliknięciu na wybrany element. Wszystkie dane należy zaczerpnąć z poniższych ilustracji.

Elementy nie wymagające ustawienia to:

Parametr globalny:

ubmodel		
exh_fluid_data [EXHMD00] exhaust gas definition - 12 species		
arameters		
Title	Value	Uni
mixture index	1	
mixture index		
coeff x of CxHy for the fuel	3	nul
coeff x of CxHy for the fuel coeff y of CxHy for the fuel	3	nul
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value	3 6 45762	nul nul kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel	3 6 45762 20.41	nul nul kJ/ kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons	3 6 45762 20.41 3	nul nul kJ/ kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons coeff b of CaHb for the hydrocarbons	3 6 45762 20.41 3 6	nul nul kJ/ kJ/ nul nul
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons coeff b of CaHb for the hydrocarbons CaHb heating value	3 6 45762 20.41 3 6 45762 20.41	nul kJ/ kJ/ nul kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons coeff b of CaHb for the hydrocarbons CaHb heating value enthalpy of formation for the hydrocarbons	3 6 45762 20.41 3 6 45762 20.41 \$AME/libeyb/data/Data_gag/Japa£Yawg/C3H6_Japa6data 20.41	nul kJ/ kJ/ nul kJ/ kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons coeff b of CaHb for the hydrocarbons CaHb heating value enthalpy of formation for the hydrocarbons filename for fuel (CxHy) thermodynamic properties	3 6 45762 20.41 3 6 45762 20.41 \$AME/libexh/data/Data_gas/Janaf-Yaws/C3H6_Janaf.data \$AME/libexh/data/Data_gas/Janaf-Yaws/C3H6_Janaf.data	nul kJ/ kJ/ nul kJ/ kJ/
coeff x of CxHy for the fuel coeff y of CxHy for the fuel CxHy fuel heating value enthalpy of formation for the fuel coeff a of CaHb for the hydrocarbons coeff b of CaHb for the hydrocarbons CaHb heating value enthalpy of formation for the hydrocarbons filename for fuel (CxHy) thermodynamic properties filename for HC (CaHb) thermodynamic properties	3 6 45762 20.41 3 6 45762 20.41 \$AME/libexh/data/Data_gas/Janaf-Yaws/C3H6_Janaf.data \$AME/libexh/data/Data_gas/Janaf-Yaws/C3H6_Janaf.data \$AME/libexh/data/Data_gas/Janaf-Yaws/C3H6_Janaf.data	nul kJ/ kJ/ nul kJ/ kJ/

Parametry elementów IPF:

Submodel -			
1->	exh_pressu source of atm pressure and	replug_2 [E ospheric temperature	XHAS001
arameters			
Title		Value	Unit
mixture	index	1	
fuel ma	fuel mass fraction		null
N2 mas	N2 mass fraction		null
O2 mas	s fraction	0.2314	null
H2 mas	s fraction	0	null
H2O ma	ass fraction	0	null
CO mas	s fraction	0	null
CO2 ma	ass fraction	0	null
NO mas	s fraction	0	null
NO2 ma	ass fraction	0	null
HC mas	s fraction	0	null
NH3 ma	ass fraction	0	null
Clean	s) mass fraction	0	null

gas_ana	nlyzer_3 [EX	HCONVO1
gas analy	zer	
arameters		
arameters Title	Value	Unit
arameters Title mixture index	Value	Unit

Reaktor katalityczny

exh_3wcc_6 [EXHCC3W002] 3 way catalytic converter - 02 and HC storage				
Title	Value	Lloit		
minture index	1	Unit		
mixture index				
reaction used for FIC OXIDAUON	conventional			
channel type	souare			
diffusion process	off			
monolith length	200	-		
monolith diameter	144	mm		
monolith apparent density	513	ka/m**3		
cosi : number of cells / square inch	200	null		
wall thickness	0.118	mm		
A 📋 # initial conditions				
monolith temperature at port 2	20	deaC		
pressure at port 3	1.013	barA		
# temperature at port 3	293.15	К		
slow HC (fuel) stored quantity	0	mol/m**3		
fast HC (CaHb) stored quantity	0	mol/m**3		
O2 stored quantity	0	mol/m**3		
# fuel mass fraction	0	null		
# N2 mass fraction	0.7686	null		
# O2 mass fraction	0.2314	null		
# H2 mass fraction	0	null		
# H2O mass fraction	0	null		
# CO mass fraction	0	null		
# CO2 mass fraction	0	null		
# NO mass fraction	0	null		
# NO2 mass fraction	0	null		
# HC mass fraction	0	null		
# MH2 mass fraction	0	null		

tle		Value		Unit
	kinetics constants			
4	CO/O2 reaction			
	CO/O2 preexponential factor		1.72e+17	mol.K/s/m**
	CO/O2 activation energy		117000	J/mol
4	fuel/O2 reaction			
	fuel/O2 preexponential factor		1.16e+15	mol.K/s/m**
	fuel/O2 activation energy		83700	J/mol
	beta function (CO/NO; HC/NO)		inactive	
	HC trap		active	
4	HC/O2 reaction			
	HC/O2 preexponential factor		1.16e+15	mol.K/s/m**
	HC/O2 activation energy		83700	J/mol
4	CO/NO reaction			
	CO/NO preexponential factor		1.6e+12	mol.K/s/m**
	CO/NO activation energy		89100	J/mol
4	📮 fuel/NO reaction			
	fuel/NO preexponential factor		5.47e+17	mol.K/s/m**
	fuel/NO activation energy		121600	J/mol
4	HC/NO reaction			
	HC/NO preexponential factor		5.47e+17	mol.K/s/m**
	HC/NO activation energy		121600	J/mol
4	🗀 fuel/H2O reaction			
	fuel/H2O preexponential factor		1.04e+08	mol.K/s/m**
	fuel/H2O activation energy		46900	J/mol
4	HC/H2O reaction			
	HC/H2O preexponential factor		1.04e+08	mol.K/s/m**
	HC/H2O activation energy		46900	J/mol
0	CO/H2O reaction			
	CO/H2O preexponential factor		5.77e+10	mol.K/s/m**
	CO/H2O activation energy		90300	J/mol
	pre exponential factor for CO/H2O equilibrium const	ant	0.0126	null
	activation energy for CO/H2O equilibrium constant		29000	null

itle			Value		Unit
4		CO/H2O reaction			
		CO/H2O preexponential factor		5.77e+10	mol.K/s/m**2
		CO/H2O activation energy		90300	J/mol
		pre exponential factor for CO/H2O equilibrium constant		0.0126	null
		activation energy for CO/H2O equilibrium constant		29000	null
4		H2/O2 reaction			
		H2/O2 preexponential factor		0	mol.K/s/m**2
		H2/O2 activation energy		117000	J/mol
4		H2/NO reaction			
	Sax Sa	H2/NO preexponential factor		0	mol.K/s/m**2
		H2/NO activation energy		50000	J/mol
4		HC storage			
		slow HC (fuel) storage capacity		0	mol/m**3
		fast HC (CaHb) storage capacity		0	mol/m**3
		adsorption amplitude for slow HC (fuel) storage		2000	m**3/mol/s
		adsorption amplitude for fast HC (CaHb) storage		2000	m**3/mol/s
		adsorption activation energy for slow HC (fuel) storage		26000	J/mol
		adsorption activation energy for fast HC (CaHb) storage		26000	J/mol
		desorption amplitude for slow HC (fuel) storage		2e+07	/s
		desorption amplitude for fast HC (CaHb) storage		2e+07	/s
		desorption activation energy for slow HC (fuel) storage		80000	J/mol
		desorption activation energy for fast HC (CaHb) storage		80000	J/mol
4		O2 storage			
		O2 storage capacity (Ceria)		60	mol/m**3
		preexp constant for Ceria oxidation		300000	mol/m**2/s
		preexp constant for Ceria reduction with CO		150000	mol/m**2/s
		preexp constant for Ceria reduction with slow HC		260000	mol/m**2/s
		preexp constant for Ceria reduction with fast HC		260000	mol/m**2/s
		activation energy for Ceria oxidation		90000	J/mol
		activation energy for Ceria reduction with CO		90000	J/mol
		activation energy for Ceria reduction with slow HC		90000	J/mol
		activation energy for Ceria reduction with fast HC		90000	J/mol

Change Parameters Submodel 2 exh_3wcc_6 [EXHCC3W002]

3 way catalytic converter -O2 and HC storage

Parameters

3

Title	Value	Unit
mixture index reaction used for HC oxidation geometry characterization channel type diffusion process	1 CxHy + (x+y/4) O2 -> x CO2 + y/4 H2O conventional square off	
heat transfer ctive coefficient used for heat transfer between monolith and gas acity as a function of wall temperature twC (in degC) or twK (in K)	1 1071. +0. 156*twK-3435. 141210/twK/twK	null

Parametry sygnałów:

Sygnał dla reaktora katalitycznego

Submodel		
	onstant_14 [(CONSO)
	onstant signal	
Parameters		
Title	Value	Unit

Sygnał dla sumatora sygnałów

ubmodel		
	constant_7 [C	ONSO]
	constant signal	
arameters		
1000200	111	Lini

Sygnał dla sumatora parametrów gazu

Submodel			
(k)~1	constant	[CON:	50]
Parameters			
Title	Value		Unit
(A) 1	L	64	mull

Sygnał narastający

ubmodel		
	ramp [RAM	n
ar arrie cer a		
Title	Value	Unit
Title value befor	Value e ramp	Unit 270 null
Title value befor slope	Value e ramp	Unit 270 null 0.4 null

Sygnały dla multipleksera

Fuel	0
N2	0
02	Od 0,00001 do 0,01
H2	0
H2O	0
СО	0,0001
CO2	0,2
NO	0,0002
NO2	0,00001
CaHb	0,00006
Nh3	0
С	0

2.4. Simulation mode

Przejście do tego trybu uaktywnia nowe menu przedstawione na rys. 6.

Rys. 6. Menu symulacji

Parametry symulacji:

ener al	Standard options	Fixed step optio	ns	
Parameter Value Unit Start time 0 seconds Final time 800 seconds Print interval 2 seconds	Integrato Stand Fixed	r type ard integrator step integrator	Miscellaneous Miscellaneous Statistics Monitor time Continuation run Use old final values	
		Run type Single Batch	run Batch options	Result file Number of saved variables: 289 Estimated size: 911.918 kB
Run Para	meters			
Run Para	meters Standard options	Fixed step optic	ons	OK Cancel
General Paramet Tolerance Maximum	meters Standard options er Value Un e 1e-05 time step 0.1 sec	Fixed step optic it onds	Error type Mixed Relative Absolute Miscellaneous	Solver type Regular Cautious Disable optimized solver

Po wprowadzeniu parametrów uruchamiamy symulację.

2.5 Wyniki symulacji

Głównym zagadnieniem przeprowadzenia symulacji jest wpływ zawartości O₂ w gazach spalinowych na konwersję CO, HC, NO_x. Zawartość O₂ przed reaktorem zawiera się w przedziale od 6% do 0,01%, co odpowiada wartościom do wprowadzenia do programu równą 0,01 do 0,00001. Wynikiem symulacji są wykresy CO, HC, NO_x (ppm) dla trzech stężeń O₂. Każdy z parametrów należy umieścić na osobnym wykresie nakładając na siebie przebiegi w zależności od zawartości tlenu. Aby uzyskać wykresy należy kliknąć dwa razy na wybrany element, w tym wypadku analizator za reaktorem, następnie wybrać interesujący nas parametr w "**in ppm of dry gases**" i wcisnąć klawisz **plot**. Pojawia się wykres poglądowy, aby zgrać dane do dalszego wykorzystania np.: w EXCELu trzeba z menu wykresu - zakładka **File** użyć opcji **Save data** i zapisać plik z danymi. Zapisany plik o rozszerzeniu .dat jest plikiem tekstowym i można go importować do dowolnego programu obróbki danych.